Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Barium oxoaluminate hydride

Markus Zumdick,^a Gerhard Althoff^b and Caroline Röhr^a*

^aInstitut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany, and ^bInstitut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 29 August 2000 Accepted 13 December 2000

The crystal structure of $Ba_3(AIO_4)H$ is isotypic with Ba_3SiS_5 and contains AIO_4^{5-} and H^- anions. The hydride and oxide anions are coordinated by six Ba and five Ba/one Al atoms in an octahedral geometry. The hydrogen content was examined by MAS–NMR experiments of the deuterated compound.

Comment

Ba₃(AlO₄)H crystallizes in the orthorhombic space group *Pnma* with the Ba₃SiS₅ structure type (Schmitz, 1981). The crystal structure is composed of AlO₄⁵⁻ and H⁻ anions separated by the charge compensating Ba²⁺ cations. The Al atoms in Ba₃(AlO₄)H are thus coordinated by four O ligands in a distorted tetrahedral environment, with Al–O distances ranging from 1.750 (3) to 1.780 (5) Å and O–Al–O angles ranging from 107.4 (1) to 118.0 (2)°. These values are comparable to those observed in the oxoaluminate BaLa(AlO₄) (Kovba *et al.*, 1985; *d*_{Al–O} = 1.75–1.77 Å). All the

Figure 1

ORTEP (Johnson, 1968) view of the [AlO₄]⁵⁻ anion together with the Ba atoms coordinating the O ligands (75% probability ellipsoids). Symmetry codes as in Table 1, with the addition of (x) $x - \frac{1}{2}$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (xi) x, $\frac{1}{2} - y$, 1 + z; (xii) x, y, 1 + z; (xiii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $\frac{1}{2} - z$; (xiv) $x - \frac{1}{2}$, y, $\frac{1}{2} - z$; (xv) $\frac{1}{2} - x$; $\frac{1}{2} + y$, $z - \frac{1}{2}$.

oxygen ligands in the structure of the title compound are coordinated by five Ba and one Al cation in a distorted octahedral geometry (Fig. 1). The hydride ions, whose existence and character was determined by solid-state MAS-NMR spectroscopy (see below), are located in the centres of distorted octahedra of Ba cations with Ba-H distances ranging from 2.80 (7) to 2.98 (8) Å (Fig. 2). These distances are comparable to those observed in BaH₂ (Bronger et al., 1987; Snyder et al., 1994), where the two crystallographically independent hydride ions are coordinated by four and five Ba²⁺ cations, respectively. The [HBa₆] octahedra are connected via common corners to form a three-dimensional network [HBa_{6/2}] corresponding to the [TiO_{6/2}] partial structure of the perovskite structure type (Fig. 3). Accordingly, $Ba_3(AlO_4)H$ can be derived from the perovskite structure by group-subgroup relation employing the antitype analogy $Ca(TiO_3)$ -AlO₄(HBa₃): starting with the perovskite type (space group Pm3m, a = b = c), the first step is a t3 transformation to the tetragonal subgroup P4/mmm. Further trans-

Figure 2

Figure 3

View of the unit cell (projection down [001]) of the crystal structure of Ba₃(AlO₄)H (dark grey octahedra: [HBa₆]; light grey tetrahedra: [AlO₄]; vector triple: unit cell of the perovskite aristotype).

formation according to a' = a + b, b' = a - b and c' = c (t2) yields the space group *Cmmm*. Doubling of the c axis (k2transformation) leads to the subgroup *Icmm* = *Cmcm*. A final k2 transformation with an origin shift $\left(x + \frac{1}{4}, y - \frac{1}{4}, z - \frac{1}{4}\right)$ results in the space group Pbnm = Pnma of the title compound. The coordination numbers of the Ba²⁺ cations by oxide and hydride ions are eight (Ba1) and nine (Ba2), respectively.

Experimental

Single crystals of Ba₃(AlO₄)H are formed by reaction of a mixture of BaH_2 and corundum with a molar ratio of 6:1. BaH_2 (3.0 g, 21.53 mmol) and corundum (0.3658 g, 3.66 mmol) were heated in corundum crucibles under an argon atmosphere in steel autoclaves up to 1070 K within 8 h, held at this temperature for 6 h and cooled to room temperature at a rate of 40 K h⁻¹. The X-ray powder patterns of the samples can be perfectly indexed on the basis of the reported single-crystal data of Ba₃(AlO₄)H. The preparation of the corresponding deuteride was carried out substituting BaD₂. ²H NMR experiments were performed on a Bruker Avance DSX 300 spectrometer operating at a deuterium resonance frequency of 46.07 MHz. A Bruker doubly tuned MAS probe for 4 mm outer diameter rotors was used. The powdered samples of Ba₃(AlO₄)D and BaD₂ were sealed in KelF inserts, which in turn were tightly fitting into zirconia rotors with KelF caps. The rotation frequency was 15 kHz. Spectra were acquired with single 90° pulses at a dwell time of 50 μ s. Four scans were taken at a recycle delay of 1 h. The 90° pulse width was 3.74 µs. The title compound contains only one crystallographically independent D^{-} ion, which gives rise to a peak at a chemical shift of 6.1 p.p.m. with respect to hexamethylbenzene- d_{18} . BaD₂ with two crystallographically independent D⁻-atom positions shows two lines in the spectrum, which at 8.3 and 9.1 p.p.m. appear in the same range as the signal of $Ba_3(AlO_4)D$.

Crystal data

Ba ₃ (AlO ₄)H	Mo $K\alpha$ radiation
$M_r = 504.01$	Cell parameters from 2363
Orthorhombic, Pnma	reflections
a = 10.4889 (8) Å	$\theta = 6.331 - 56.533^{\circ}$
b = 8.1503 (9) Å	$\mu = 18.932 \text{ mm}^{-1}$
c = 7.2440 (12) Å	T = 293 (2) K
$V = 619.27 (13) \text{ Å}^3$	Irregular, clear light red
Z = 4	$0.17 \times 0.12 \times 0.10 \text{ mm}$
$D_x = 5.406 \text{ Mg m}^{-3}$	
Data collection	
Bruker AXS CCD diffractometer	752 reflections with $I > 2\sigma(I)$ $R_{\rm ex} = 0.029$

 $\theta_{\rm max} = 28.31^\circ$

 $h = -13 \rightarrow 13$

 $k=-6\rightarrow 10$

 $l = -9 \rightarrow 8$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.070,\ T_{\rm max}=0.151$ 3661 measured reflections

810 independent reflections

Table 1

Selected geometric parameters (Å).

Ba1-O2 ¹	2.744 (3)	Ba2-O1 ^{vn}	2.694 (3)
Ba1-O3	2.766 (3)	Ba2-H1 ^{viii}	2.80(7)
Ba1-H1 ⁱⁱ	2.82 (5)	Ba2-O2 ^{viii}	2.828 (5)
Ba1-O2 ⁱⁱ	2.829 (3)	Ba2-O1 ⁱ	2.844 (3)
Ba1-O1	2.854 (3)	Ba2-O1 ⁱⁱⁱ	2.844 (3)
Ba1-O1 ⁱⁱⁱ	2.913 (3)	Ba2-H1	2.98 (8)
Ba1-H1 ^{iv}	2.97 (7)	Al1-O1 ^{ix}	1.750 (3)
Ba1-O3 ⁱⁱ	2.998 (3)	Al1-O1	1.750 (3)
Ba1-O1 ^v	3.191 (3)	Al1-O3	1.774 (5)
Ba2-O3	2.635 (4)	Al1-O2	1.780 (5)
Ba2-O1 ^{vi}	2.694 (3)		

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, z - \frac{1}{2}$; (iii) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (iv) x, y, z - 1; (v) $\frac{1}{2} - x, -y, z - \frac{1}{2}$; (vi) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$; (vii) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (viii) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (viii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{3}{2} - z$; (ix) $x, \frac{1}{2} - y, z$.

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.023$	$w = 1/[\sigma^2 (F_o^2) + (0.0328P)^2]$
$wR(F^2) = 0.054$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.129	$(\Delta/\sigma)_{\rm max} = 0.025$
810 reflections	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
46 parameters	$\Delta \rho_{\rm min} = -2.26 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1999); software used to prepare material for publication: SHELXL97.

We would like to thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der chemischen Industrie for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1007). Services for accessing these data are described at the back of the journal.

References

- Bruker (1999). SMART and SAINT. Version 6.02A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Finger, L. & Kroeker, M. (1999). DRAWxtl, http://www.lwfinger.net/drawxtl. Johnson, C. K. (1968). ORTEP. Oak Ridge National Laboratory, Tennessee,
- USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.] Kovba, L. M., Lykova, L. N. & Antipov, E. V. (1985). Koord. Khim. 11, 1574-1576.
- Schmitz, D. (1981). Acta Cryst. B37, 518-525.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Snyder, G. J., Borrmann, H. & Simon, A. (1994). Z. Kristallogr. 209, 458.

Markus Zumdick et al. • Ba₃(AlO₄)H

Bronger, W., Chi-Chten, Sch. & Müller, P. (1987). Z. Anorg. Allg. Chem. 545, 69-74.